Diffusion tensor MRI reveals chronic alterations in white matter despite the absence of a visible ischemic lesion on conventional MRI: a nonhuman primate study.
نویسندگان
چکیده
BACKGROUND AND PURPOSE The impact of stroke on white matter is poorly described in preclinical investigations mainly based on rodents with a low white (WM)/gray matter ratio. Using diffusion tensor imaging, we evaluated WM alterations and correlated them with sensorimotor deficits after stroke in the marmoset, a nonhuman primate that displays a WM/gray matter ratio close to that of humans. METHODS Marmosets underwent a transient brain ischemia (3-hour). Eight serial MRI examinations were made during ischemia and up to 45 days after reperfusion. The sensorimotor deficits were evaluated weekly over 45 days. To assess WM alterations, the SD of the angle of the first eigenvector projection was calculated in the cortex and in the internal and external capsules. The fiber-tracking approach was used to measure the number and the length of bundles. RESULTS Changes in the apparent diffusion coefficient and the fractional anisotropy values were similar during the temporal evolution of the lesion in the marmoset model of ischemia to that reported in patients with stroke. Despite an absence of visible lesions on T2-MRI and diffusion tensor imaging at the chronic stage, diffusion tensor MRI evidenced alterations in WM by the increase in the standard deviation of the angle of the first eigenvector projection in the cortex, internal and external capsules, and the decrease in the number of bundles of fibers tracked. The disruption of WM was strongly correlated with the chronic sensorimotor deficits. CONCLUSIONS Despite an absence of a visible ischemic lesion at the chronic stage, diffusion tensor MRI revealed disorganization of WM, which probably underlies the persistence of functional deficits.
منابع مشابه
مقایسه Diffusion-MRI با MRI متداول در کشف ضایعات داخل مغزی مولتیپل اسکلروزیس
Background: Multiple sclerosis (MS) is a chronic disease that begins most commonly in young adults and is characterized pathologically by multiple areas of central nervous system (CNS) white matter inflammation, demyelination, and glial scarring. The most valuable aid for diagnosis is magnetic resonance imaging (MRI). New type of MRI has been developed on the basis of molecular diffusion which ...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملDiffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis.
BACKGROUND Cerebral small vessel disease is a common cause of vascular dementia. Both discrete lacunar infarcts and more diffuse ischaemic changes, seen as confluent high signal (leukoaraiosis) on T2 weighted magnetic resonance imaging (MRI), occur. However, there is a weak correlation between T2 lesion load and cognitive impairment. Diffusion tensor MRI (DTI) is a new technique that may provid...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 42 5 شماره
صفحات -
تاریخ انتشار 2011